
Point·E: A System for Generating 3D Point Clouds from Complex Prompts

Alex Nichol * 1 Heewoo Jun * 1 Prafulla Dhariwal 1 Pamela Mishkin 1 Mark Chen 1

Abstract

While recent work on text-conditional 3D ob-
ject generation has shown promising results, the
state-of-the-art methods typically require multi-
ple GPU-hours to produce a single sample. This
is in stark contrast to state-of-the-art generative
image models, which produce samples in a num-
ber of seconds or minutes. In this paper, we ex-
plore an alternative method for 3D object gen-
eration which produces 3D models in only 1-2
minutes on a single GPU. Our method first gener-
ates a single synthetic view using a text-to-image
diffusion model, and then produces a 3D point
cloud using a second diffusion model which con-
ditions on the generated image. While our method
still falls short of the state-of-the-art in terms of
sample quality, it is one to two orders of mag-
nitude faster to sample from, offering a prac-
tical trade-off for some use cases. We release
our pre-trained point cloud diffusion models, as
well as evaluation code and models, at https:
//github.com/openai/point-e.

1. Introduction
With the recent explosion of text-to-image generative mod-
els, it is now possible to generate and modify high-quality
images from natural language descriptions in a number of
seconds (Ramesh et al., 2021; Ding et al., 2021; Nichol
et al., 2021; Ramesh et al., 2022; Gafni et al., 2022; Yu
et al., 2022; Saharia et al., 2022; Feng et al., 2022; Balaji
et al., 2022). Inspired by these results, recent works have
explored text-conditional generation in other modalities,
such as video (Hong et al., 2022; Singer et al., 2022; Ho
et al., 2022b;a) and 3D objects (Jain et al., 2021; Poole et al.,
2022; Lin et al., 2022a; Sanghi et al., 2021; 2022). In this
work, we focus specifically on the problem of text-to-3D
generation, which has significant potential to democratize
3D content creation for a wide range of applications such as

*Equal contribution 1OpenAI, San Francisco, USA. Corre-
spondence to: Alex Nichol <alex@openai.com>, Heewoo Jun
<heewoo@openai.com>.

virtual reality, gaming, and industrial design.

Recent methods for text-to-3D synthesis typically fall into
one of two categories:

1. Methods which train generative models directly on
paired (text, 3D) data (Chen et al., 2018; Mittal et al.,
2022; Fu et al., 2022; Zeng et al., 2022) or unlabeled
3D data (Sanghi et al., 2021; 2022; Watson et al., 2022).
While these methods can leverage existing generative
modeling approaches to produce samples efficiently,
they are difficult to scale to diverse and complex text
prompts due to the lack of large-scale 3D datasets
(Sanghi et al., 2022).

2. Methods which leverage pre-trained text-image mod-
els to optimize differentiable 3D representations (Jain
et al., 2021; Poole et al., 2022; Lin et al., 2022a). These
methods are often able to handle complex and diverse
text prompts, but require expensive optimization pro-
cesses to produce each sample. Furthermore, due to the
lack of a strong 3D prior, these methods can fall into
local minima which don’t correspond to meaningful or
coherent 3D objects (Poole et al., 2022).

We aim to combine the benefits of both categories by pairing
a text-to-image model with an image-to-3D model. Our text-
to-image model leverages a large corpus of (text, image)
pairs, allowing it to follow diverse and complex prompts,
while our image-to-3D model is trained on a smaller dataset
of (image, 3D) pairs. To produce a 3D object from a text
prompt, we first sample an image using the text-to-image
model, and then sample a 3D object conditioned on the
sampled image. Both of these steps can be performed in a
number of seconds, and do not require expensive optimiza-
tion procedures. Figure 1 depicts this two-stage generation
process.

We base our generative stack on diffusion (Sohl-Dickstein
et al., 2015; Song & Ermon, 2020b; Ho et al., 2020), a re-
cently proposed generative framework which has become
a popular choice for text-conditional image generation.
For our text-to-image model, we use a version of GLIDE
(Nichol et al., 2021) fine-tuned on 3D renderings (Section
4.2). For our image-to-3D model, we use a stack of diffusion
models which generate RGB point clouds conditioned on

ar
X

iv
:2

21
2.

08
75

1v
1

 [
cs

.C
V

]
 1

6
D

ec
 2

02
2

https://github.com/openai/point-e
https://github.com/openai/point-e

Point·E: A System for Generating 3D Point Clouds from Complex Prompts

Figure 1. A high-level overview of our pipeline. First, a text prompt is fed into a GLIDE model to produce a synthetic rendered view.
Next, a point cloud diffusion stack conditions on this image to produce a 3D RGB point cloud.

“a corgi wearing a
red santa hat”

“a multicolored rainbow
pumpkin” “an elaborate fountain” “a traffic cone”

“a vase of purple flowers”
“a small red cube is sitting
on top of a large blue cube.
red on top, blue on bottom”

“a pair of 3d glasses,
left lens is red right

is blue”

“an avocado chair, a chair
imitating an avocado”

“a pair of purple
headphones” “a yellow rubber duck” “a red mug filled

with coffee”
“a humanoid robot with

a round head”

Figure 2. Selected point clouds generated by Point·E using the given text prompts. For each prompt, we selected one point cloud out of
eight samples.

Point·E: A System for Generating 3D Point Clouds from Complex Prompts

images (Section 4.3 and 4.4 detail our novel Transformer-
based architecture for this task). For rendering-based eval-
uations, we go one step further and produce meshes from
generated point clouds using a regression-based approach
(Section 4.5).

We find that our system can often produce colored 3D point
clouds that match both simple and complex text prompts
(See Figure 2). We refer to our system as Point·E, since
it generates point clouds efficiently. We release our point
cloud diffusion models, as well as evaluation code and mod-
els, at https://github.com/openai/point-e.

2. Background
Our method builds off of a growing body of work on
diffusion-based models, which were first proposed by Sohl-
Dickstein et al. (2015) and popularized more recently (Song
& Ermon, 2020b;a; Ho et al., 2020).

We follow the Gaussian diffusion setup of Ho et al. (2020),
which we briefly describe here. We aim to sample from
some distribution q(x0) using a neural network approxima-
tion pθ(x0). Under Gaussian diffusion, we define a noising
process

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI)

for integer timesteps t ∈ [0, T]. Intuitively, this process
gradually adds Gaussian noise to a signal, with the amount
of noise added at each timestep determined by some noise
schedule βt. We employ a noise schedule such that, by the
final timestep t = T , the sample xT contains almost no
information (i.e. it looks like Gaussian noise). Ho et al.
(2020) note that it is possible to directly jump to a given
timestep of the noising process without running the whole
chain:

xt =
√
ᾱtx0 +

√
1− ᾱtε

where ε ∼ N (0, I) and ᾱt :=
∏t
s=0 1− βt.

To train a diffusion model, we approximate q(xt−1|xt) as
a neural network pθ(xt−1|xt). We can then produce a sam-
ple by starting at random Gaussian noise xT and gradually
reversing the noising process until arriving at a noiseless
sample x0. With enough small steps, pθ(xt−1|xt) can be
parameterized as a diagonal Gaussian distribution, and Ho
et al. (2020) propose to parameterize the mean of this distri-
bution by predicting ε, the effective noise added to a sample
xt. While Ho et al. (2020) fix the variance Σ of pθ(xt−1|xt)
to a reasonable per-timestep heuristic, Nichol & Dhariwal
(2021) achieve better results by predicting the variance as
well as the mean.

Diffusion sampling can be cast through the lens of differ-
ential equations (Song et al., 2020), allowing one to use
various SDE and ODE solvers to sample from these models.
Karras et al. (2022) find that a carefully-designed second-
order ODE solver provides a good trade-off between quality
and sampling efficiency, and we employ this sampler for our
point cloud diffusion models.

To trade off sample diversity for fidelity in diffusion mod-
els, several guidance strategies may be used. Dhariwal &
Nichol (2021) introduce classifier guidance, where gradi-
ents from a noise-aware classifier ∇xtpθ(y|xt) are used
to perturb every sampling step. They find that increasing
the scale of the perturbation increases generation fidelity
while reducing sample diversity. Ho & Salimans (2021)
introduce classifier-free guidance, wherein a conditional
diffusion model p(xt−1|xt, y) is trained with the class label
stochastically dropped and replaced with an additional ∅
class. During sampling, the model’s output ε is linearly ex-
trapolated away from the unconditional prediction towards
the conditional prediction:

εguided := εθ(xt,∅) + s · (εθ(xt, y)− εθ(xt,∅))

for some guidance scale s ≥ 1. This approach is straight-
forward to implement, requiring only that conditioning in-
formation is randomly dropped during training time. We
employ this technique throughout our models, using the
drop probability 0.1.

3. Related Work
Several prior works have explored generative models over
point clouds. Achlioptas et al. (2017) train point cloud auto-
encoders, and fit generative priors (either GANs (Goodfel-
low et al., 2014) or GMMs) on the resulting latent repre-
sentations. Mo et al. (2019) generate point clouds using
a VAE (Kingma & Welling, 2013) on hierarchical graph
representations of 3D objects. Yang et al. (2019) train a
two-stage flow model for point cloud generation: first, a
prior flow model produces a latent vector, and then a second
flow model samples points conditioned on the latent vector.
Along the same lines, Luo & Hu (2021); Cai et al. (2020)
both train two-stage models where the second stage is a
diffusion model over individual points in a point cloud, and
the first stage is a latent flow model or a latent GAN, respec-
tively. Zeng et al. (2022) train a two-stage hierarchical VAE
on point clouds with diffusion priors at both stages. Most
similar to our work, Zhou et al. (2021a) introduce PVD, a
single diffusion model that generates point clouds directly.
Compared to previous point cloud diffusion methods such as
PVD, our Transformer-based model architecture is simpler
and incorporates less 3D-specific structure. Unlike prior
works, our models also produce RGB channels alongside

https://github.com/openai/point-e

Point·E: A System for Generating 3D Point Clouds from Complex Prompts

point cloud coordinates.

A growing body of work explores the problem of 3D model
generation in representations other than point clouds. Sev-
eral works aim to train 3D-aware GANs from datasets of
2D images (Chan et al., 2020; Schwarz et al., 2020; Chan
et al., 2021; Or-El et al., 2021; Gu et al., 2021; Zhou et al.,
2021b). These GANs are typically applied to the problem
of novel view synthesis in forward-facing scenes, and do
not attempt to reconstruct full 360-degree views of objects.
More recently, Gao et al. (2022) train a GAN that directly
produces full 3D meshes, paired with a discriminator that
inputs differentiably-rendered (Laine et al., 2020) views
of the generated meshes. Bautista et al. (2022) generates
complete 3D scenes by first learning a representation space
that decodes into NeRFs (Mildenhall et al., 2020), and then
training a diffusion prior on this representation space. How-
ever, none of these works have demonstrated the ability to
generate arbitrary 3D models conditioned on open-ended,
complex text-prompts.

Several recent works have explored the problem of text-
conditional 3D generation by optimizing 3D representations
according to a text-image matching objective. Jain et al.
(2021) introduce DreamFields, a method which optimizes
the parameters of a NeRF using an objective based on CLIP
(Radford et al., 2021). Notably, this method requires no
3D training data. Building on this principle, Khalid et al.
(2022) optimizes a mesh using a CLIP-guided objective,
finding that the mesh representation is more efficient to
optimize than a NeRF. More recently, Poole et al. (2022)
extend DreamFields to leverage a pre-trained text-to-image
diffusion model instead of CLIP, producing more coherent
and complex objects. Lin et al. (2022a) build off of this tech-
nique, but convert the NeRF representation into a mesh and
then refine the mesh representation in a second optimization
stage. While these approaches are able to produce diverse
and complex objects or scenes, the optimization procedures
typically require multiple GPU hours to converge, making
them difficult to apply in practical settings.

While the above approaches are all based on optimization
against a text-image model and do not leverage 3D data,
other methods for text-conditional 3D synthesis make use
of 3D data, possibly paired with text labels. Chen et al.
(2018) employ a dataset of text-3D pairs to train a GAN to
generate 3D representations conditioned on text. Liu et al.
(2022) also leverage paired text-3D data to generate models
in a joint representation space. Sanghi et al. (2021) employ
a flow-based model to generate 3D latent representations,
and find some text-to-3D capabilities when conditioning
their model on CLIP embeddings. More recently, Zeng
et al. (2022) achieve similar results when conditioning on
CLIP embeddings, but employ a hierarchical VAE on point
clouds for their generative stack. Mittal et al. (2022) and

Fu et al. (2022) employ a VQ-VAE (van den Oord et al.,
2017) with an autoregressive prior to sample 3D shapes
conditioned on text labels. More recently, Sanghi et al.
(2022) also employ a VQ-VAE approach, but leverage CLIP
embeddings to avoid the need for explicit text labels in the
dataset. While many of these works demonstrate promising
early results, they tend to be limited to simple prompts or a
narrow set of object categories due to the limited availability
of 3D training data. Our method sidesteps this issue by
leveraging a pre-trained text-to-image model to condition
our 3D generation procedure.

A large body of research focuses on reconstructing 3D mod-
els from single or few images. Notably, this is an underspec-
ified problem, since the model must impute some details not
present in the conditioning image(s). Nevertheless, some
regression-based methods have shown promising results on
this task (Choy et al., 2016; Wang et al., 2018; Gkioxari
et al., 2019; Groueix et al., 2018; Yu et al., 2020; Lin et al.,
2022b). A separate body of literature studies generative ap-
proaches for single- or multi-view reconstruction. Fan et al.
(2016) predict point clouds of objects from single views us-
ing a VAE. Sun et al. (2018) use a hybrid of a flow predictor
and a GAN to generate novel views from few images. Ko-
siorek et al. (2021) use a view-conditional VAE to generate
latent vectors for a NeRF decoder. Watson et al. (2022) em-
ploy an image-to-image diffusion model to synthesize novel
views of an object conditioned on a single view, allowing
many consistent views to be synthesized autoregressively.

4. Method
Rather than training a single generative model to directly
produce point clouds conditioned on text, we instead break
the generation process into three steps. First, we generate
a synthetic view conditioned on a text caption. Next, we
produce a coarse point cloud (1,024 points) conditioned on
the synthetic view. And finally, we produce a fine point
cloud (4,096 points) conditioned on the low-resolution point
cloud and the synthetic view. In practice, we assume that
the image contains the relevant information from the text,
and do not explicitly condition the point clouds on the text.

To generate text-conditional synthetic views, we use a 3-
billion parameter GLIDE model (Nichol et al., 2021) fine-
tuned on rendered 3D models from our dataset (Section 4.2).
To generate low-resolution point clouds, we use a condi-
tional, permutation invariant diffusion model (Section 4.3).
To upsample these low-resolution point clouds, we use a
similar (but smaller) diffusion model which is additionally
conditioned on the low-resolution point cloud (Section 4.4).

We train our models on a dataset of several million 3D
models and associated metadata. We process the dataset
into rendered views, text descriptions, and 3D point clouds

Point·E: A System for Generating 3D Point Clouds from Complex Prompts

with associated RGB colors for each point. We describe our
data processing pipeline in more detail in Section 4.1.

4.1. Dataset

We train our models on several million 3D models. We
found that data formats and quality varied wildly across our
dataset, prompting us to develop various post-processing
steps to ensure higher data quality.

To convert all of our data into one generic format, we ren-
dered every 3D model from 20 random camera angles as
RGBAD images using Blender (Community, 2018), which
supports a variety of 3D formats and comes with an opti-
mized rendering engine. For each model, our Blender script
normalizes the model to a bounding cube, configures a stan-
dard lighting setup, and finally exports RGBAD images
using Blender’s built-in realtime rendering engine.

We then converted each object into a colored point cloud
using its renderings. In particular, we first constructed a
dense point cloud for each object by computing points for
each pixel in each RGBAD image. These point clouds typ-
ically contain hundreds of thousands of unevenly spaced
points, so we additionally used farthest point sampling to
create uniform clouds of 4K points. By constructing point
clouds directly from renders, we were able to sidestep vari-
ous issues that might arise from attempting to sample points
directly from 3D meshes, such as sampling points which are
contained within the model or dealing with 3D models that
are stored in unusual file formats.

Finally, we employed various heuristics to reduce the fre-
quency of low-quality models in our dataset. First, we
eliminated flat objects by computing the SVD of each point
cloud and only retaining those where the smallest singular
value was above a certain threshold. Next, we clustered
the dataset by CLIP features (for each object, we averaged
features over all renders). We found that some clusters con-
tained many low-quality categories of models, while other
clusters appeared more diverse or interpretable. We binned
these clusters into several buckets of varying quality, and
used a weighted mixture of the resulting buckets as our final
dataset.

4.2. View Synthesis GLIDE Model

Our point cloud models are conditioned on rendered views
from our dataset, which were all produced using the same
renderer and lighting settings. Therefore, to ensure that
these models correctly handle generated synthetic views,
we aim to explicitly generate 3D renders that match the
distribution of our dataset.

To this end, we fine-tune GLIDE with a mixture of its origi-
nal dataset and our dataset of 3D renderings. Since our 3D
dataset is small compared to the original GLIDE training

Figure 3. Our point cloud diffusion model architecture. Images
are fed through a frozen, pre-trained CLIP model, and the output
grid is fed as tokens into the transformer. Both the timestep t
and noised input xt are also fed in as tokens. The output tokens
corresponding to xt are used to predict ε and Σ.

set, we only sample images from the 3D dataset 5% of the
time, using the original dataset for the remaining 95%. We
fine-tune for 100K iterations, meaning that the model has
made several epochs over the 3D dataset (but has never seen
the same exact rendered viewpoint twice).

To ensure that we always sample in-distribution renders
(rather than only sampling them 5% of the time), we add a
special token to every 3D render’s text prompt indicating
that it is a 3D render; we then sample with this token at test
time.

4.3. Point Cloud Diffusion

To generate point clouds with diffusion, we extend the frame-
work used by Zhou et al. (2021a) to include RGB colors
for each point in a point cloud. In particular, we represent
a point cloud as a tensor of shape K × 6, where K is the
number of points, and the inner dimension contains (x, y, z)
coordinates as well as (R,G,B) colors. All coordinates
and colors are normalized to the range [−1, 1]. We then
generate these tensors directly with diffusion, starting from
random noise of shape K × 6, and gradually denoising it.

Unlike prior work which leverages 3D-specific architectures
to process point clouds, we use a simple Transformer-based
model (Vaswani et al., 2017) to predict both ε and Σ con-
ditioned on the image, timestep t, and noised point cloud
xt. An overview of our architecture can be seen in Figure
3. As input context to this model, we run each point in
the point cloud through a linear layer with output dimen-
sion D, obtaining a K ×D input tensor. Additionally, we
run the timestep t through a small MLP, obtaining another
D-dimensional vector to prepend to the context.

To condition on the image, we feed it through a pre-trained

Point·E: A System for Generating 3D Point Clouds from Complex Prompts

ViT-L/14 CLIP model, take the last layer embeddings from
this CLIP model (of shape 256×D′), and linearly project it
into another tensor of shape 256×D before prepending it
to the Transformer context. In Section 5.1, we find that this
is superior to using a single CLIP image or text embedding,
as done by Sanghi et al. (2021); Zeng et al. (2022); Sanghi
et al. (2022).

The final input context to our model is of shape (K+257)×
D. To obtain a final output sequence of length K, we take
the final K tokens of output and project it to obtain ε and Σ
predictions for the K input points.

Notably, we do not employ positional encodings for this
model. As a result, the model itself is permutation-invariant
to the input point clouds (although the output order is tied
to the input order).

4.4. Point Cloud Upsampler

For image diffusion models, the best quality is typically
achieved by using some form of hierarchy, where a low-
resolution base model produces output which is then upsam-
pled by another model (Nichol & Dhariwal, 2021; Saharia
et al., 2021; Ho et al., 2021; Rombach et al., 2021). We em-
ploy this approach to point cloud generation by first generat-
ing 1K points with a large base model, and then upsampling
to 4K points using a smaller upsampling model. Notably,
our models’ compute requirements scale with the number
of points, so it is four times more expensive to generate 4K
points than 1K points for a fixed model size.

Our upsampler uses the same architecture as our base model,
with extra conditioning tokens for the low-resolution point
cloud. To arrive at 4K points, the upsampler conditions on
1K points and generates an additional 3K points which are
added to the low-resolution pointcloud. We pass the con-
ditioning points through a separate linear embedding layer
than the one used for xt, allowing the model to distinguish
conditioning information from new points without requiring
the use of positional embeddings.

4.5. Producing Meshes

For rendering-based evaluations, we do not render generated
point clouds directly. Rather, we convert the point clouds
into textured meshes and render these meshes using Blender.
Producing meshes from point clouds is a well-studied, some-
times difficult problem. Point clouds produced by our mod-
els often have cracks, outliers, or other types of noise that
make the problem particularly challenging. We briefly tried
using pre-trained SAP models (Peng et al., 2021) for this
purpose, but found that the resulting meshes sometimes lost
large portions or important details of the shape that were
present in the point clouds. Rather than training new SAP
models, we opted to take a simpler approach.

To convert point clouds into meshes, we use a regression-
based model to predict the signed distance field of an ob-
ject given its point cloud, and then apply marching cubes
(Lorensen & Cline, 1987) to the resulting SDF to extract
a mesh. We then assign colors to each vertex of the mesh
using the color of the nearest point from the original point
cloud. For details, see Appendix C.

5. Results
In the following sections, we conduct a number of ablations
and comparisons to evaluate how our method performs and
scales. We adopt the CLIP R-Precision (Park et al., 2021)
metric for evaluating text-to-3D methods end-to-end, using
the same object-centric evaluation prompts as Jain et al.
(2021). Additionally, we introduce a new pair of metrics
which we refer to as P-IS and P-FID, which are point cloud
analogs for Inception Score (Salimans et al., 2016) and FID
(Heusel et al., 2017), respectively.

To construct our P-IS and P-FID metrics, we employ a mod-
ified PointNet++ model (Qi et al., 2017) to extract features
and predict class probabilities for point clouds. For details,
see Appendix B.

5.1. Model Scaling and Ablations

In this section, we train a variety of base diffusion models
to study the effect of scaling and to ablate the importance
of image conditioning. We train the following base models
and evaluate them throughout training:

• 40M (uncond.): a small model without any condition-
ing information.

• 40M (text vec.): a small model which only conditions
on text captions, not rendered images. The text caption
is embedded with CLIP, and the CLIP embedding is
appended as a single extra token of context. This model
depends on the text captions present in our 3D dataset,
and does not leverage the fine-tuned GLIDE model.

• 40M (image vec.): a small model which conditions on
CLIP image embeddings of rendered images, similar
to Sanghi et al. (2021). This differs from the other
image-conditional models in that the image is encoded
into a single token of context, rather than as a sequence
of latents corresponding to the CLIP latent grid.

• 40M: a small model with full image conditioning
through a grid of CLIP latents.

• 300M: a medium model with full image conditioning
through a grid of CLIP latents.

• 1B: a large model with full image conditioning through
a grid of CLIP latents.

Point·E: A System for Generating 3D Point Clouds from Complex Prompts

0.25 0.50 0.75 1.00 1.25
training iterations 1e6

5

10

15

20

P-
FI
D

40M (uncond.)
40M (text vec.)
40M (image vec.)
40M
300M
1B

(a) P-FID

0.25 0.50 0.75 1.00 1.25
training iterations 1e6

9

10

11

12

13

P-
IS

40M (uncond.)
40M (text vec.)
40M (image vec.)
40M
300M
1B

(b) P-IS

0.25 0.50 0.75 1.00 1.25
training iterations 1e6

0.0

0.1

0.2

0.3

0.4

C
LI
P
R
-P
re
ci
si
on

1B
300M
40M
40M (image vec.)
40M (text vec.)
40M (uncond.)

(c) CLIP R-Precision

Figure 4. Sample-based evaluations computed throughout train-
ing across different base model runs. The same upsampler and
conditioning images are used for all runs.

In order to isolate changes to the base model, we use the
same (image conditional) upsampler model for all evalua-
tions, and use the same 306 pre-generated synthetic views
for the CLIP R-Precision evaluation prompts. Here we use
the ViT-L/14 CLIP model to compute CLIP R-Precision,
but we report results with an alternative CLIP model in
Section 5.3.

In Figure 4, we present the results of our ablations. We find
that using only text conditioning with no text-to-image step
results in much worse CLIP R-Precision (see Appendix E
for more details). Furthermore, we find that using a single
CLIP embedding to condition on images is worse than using
a grid of embeddings, suggesting that the point cloud model
benefits from seeing more (spatial) information about the
conditioning image. Finally, we find that scaling our model
improves the speed of P-FID convergence, and increases
final CLIP R-Precision.

(a) Image to point cloud sample for the prompt “a very
realistic 3D rendering of a corgi”.

(b) Image to point cloud sample for the prompt “a traffic
cone”.

Figure 5. Two common failure modes of our model. In the top
example, the model incorrectly interprets the relative proportions
of different parts of the depicted object, producing a tall dog instead
of a short, long dog. In the bottom example, the model cannot
see underneath the traffic cone, and incorrectly infers a second
mirrored cone.

5.2. Qualitative Results

We find that Point·E can often produce consistent and high-
quality 3D shapes for complex prompts. In Figure 2, we
show various point cloud samples which demonstrate our
model’s ability to infer a variety of shapes while correctly
binding colors to the relevant parts of the shapes.

Sometimes the point cloud diffusion model fails to under-
stand or extrapolate the conditioning image, resulting in
a shape that does not match the original prompt. We find
that this is usually due to one of two issues: 1) the model
incorrectly interprets the shape of the object depicted in the
image, or 2) the model incorrectly infers some part of the
shape that is occluded in the image. In Figure 5, we present
an example of each of these two failure modes.

5.3. Comparison to Other Methods

As text-conditional 3D synthesis is a fairly new area of re-
search, there is not yet a standard set of benchmarks for this
task. However, several other works evaluate 3D generation
using CLIP R-Precision, and we compare to these methods
in Table 1. In addition to CLIP R-Precision, we also note the
reported sampling compute requirements for each method.

While our method performs worse than the current state-of-
the-art, we note two subtleties of this evaluation which may
explain some (but likely not all) of this discrepancy:

Point·E: A System for Generating 3D Point Clouds from Complex Prompts

Table 1. Comparison of Point·E to other 3D generative techniques
as measured by CLIP R-Precision (with two different CLIP base
models) on COCO evaluation prompts. ∗50 P100-minutes con-
verted to V100-minutes using conversion rate 1

3
. †Assuming 2

V100 minutes = 1 A100 minute and 1 TPUv4-minute = 1 A100-
minute. We report DreamFields results from Poole et al. (2022).

Method ViT-B/32 ViT-L/14 Latency

DreamFields 78.6% 82.9% ∼ 200 V100-hr†

CLIP-Mesh 67.8% 74.5% ∼ 17 V100-min∗

DreamFusion 75.1% 79.7% ∼ 12 V100-hr†

Point·E (40M,
text-only) 15.4% 16.2% 16 V100-sec

Point·E (40M) 36.5% 38.8% 1.0 V100-min
Point·E (300M) 40.3% 45.6% 1.2 V100-min

Point·E (1B) 41.1% 46.8% 1.5 V100-min

Conditioning
images 69.6% 86.6% -

• Unlike multi-view optimization-based methods like
DreamFusion, Point·E does not explicitly optimize ev-
ery view to match the text prompt. This could result in
lower CLIP R-Precision simply because certain objects
are not easy to identify from all angles.

• Our method produces point clouds which must be pre-
processed before rendering. Converting point clouds
into meshes is a difficult problem, and the approach
we use can sometimes lose information present in the
point clouds themselves.

While our method performs worse on this evaluation than
state-of-the-art techniques, it produces samples in a small
fraction of the time. This could make it more practical for
certain applications, or could allow for the discovery of
higher-quality 3D objects by sampling many objects and
selecting the best one according to some heuristic.

6. Limitations and Future Work
While our model is a meaningful step towards fast text-to-
3D synthesis, it also has several limitations. Currently, our
pipeline requires synthetic renderings, but this limitation
could be lifted in the future by training 3D generators that
condition on real-world images. Furthermore, while our
method produces colored three-dimensional shapes, it does
so at a relatively low resolution in a 3D format (point clouds)
that does not capture fine-grained shape or texture. Extend-
ing this method to produce high-quality 3D representations
such as meshes or NeRFs could allow the model’s outputs
to be used for a variety of applications. Finally, our method
could be used to initialize optimization-based techniques to
speed up initial convergence.

We expect that this model shares many of the limitations,

“a 3D printable gear, a single
gear 3 inches in diameter

and half inch thick”

Figure 6. Example of a potential misuse of our model, where it
could be used to fabricate objects in the real world without external
validation.

including bias, as our DALL·E 2 system where many of
the biases are inherited from the dataset (Mishkin et al.,
2022). In addition, this model has the ability to support the
creation of point clouds that can then be used to fabricate
products in the real world, for example through 3D printing
(Walther, 2014; Neely, 2016; Straub & Kerlin, 2016). This
has implications both when the models are used to create
blueprints for dangerous objects and when the blueprints are
trusted to be safe despite no empirical validation (Figure 6).

7. Conclusion
We have presented Point·E, a system for text-conditional
synthesis of 3D point clouds that first generates synthetic
views and then generates colored point clouds conditioned
on these views. We find that Point·E is capable of efficiently
producing diverse and complex 3D shapes conditioned on
text prompts. We hope that our approach can serve as a
starting point for further work in the field of text-to-3D
synthesis.

8. Acknowledgements
We would like to thank everyone behind ChatGPT for creat-
ing a tool that helped provide useful writing feedback.

References
Achlioptas, P., Diamanti, O., Mitliagkas, I., and Guibas, L.

Learning representations and generative models for 3d
point clouds. arXiv:1707.02392, 2017.

Balaji, Y., Nah, S., Huang, X., Vahdat, A., Song, J., Kreis,
K., Aittala, M., Aila, T., Laine, S., Catanzaro, B., Karras,
T., and Liu, M.-Y. ediff-i: Text-to-image diffusion models
with an ensemble of expert denoisers, 2022.

Bautista, M. A., Guo, P., Abnar, S., Talbott, W., Toshev,
A., Chen, Z., Dinh, L., Zhai, S., Goh, H., Ulbricht, D.,

https://arxiv.org/abs/1707.02392

Point·E: A System for Generating 3D Point Clouds from Complex Prompts

Dehghan, A., and Susskind, J. Gaudi: A neural architect
for immersive 3d scene generation. arXiv:2207.13751,
2022.

Cai, R., Yang, G., Averbuch-Elor, H., Hao, Z., Belongie, S.,
Snavely, N., and Hariharan, B. Learning gradient fields
for shape generation. arXiv:2008.06520, 2020.

Chan, E. R., Monteiro, M., Kellnhofer, P., Wu, J.,
and Wetzstein, G. pi-gan: Periodic implicit genera-
tive adversarial networks for 3d-aware image synthesis.
arXiv:2012.00926, 2020.

Chan, E. R., Lin, C. Z., Chan, M. A., Nagano, K., Pan, B.,
Mello, S. D., Gallo, O., Guibas, L., Tremblay, J., Khamis,
S., Karras, T., and Wetzstein, G. Efficient geometry-aware
3d generative adversarial networks. arXiv:2112.07945,
2021.

Chen, K., Choy, C. B., Savva, M., Chang, A. X., Funkhouser,
T., and Savarese, S. Text2shape: Generating shapes
from natural language by learning joint embeddings.
arXiv:1803.08495, 2018.

Choy, C. B., Xu, D., Gwak, J., Chen, K., and Savarese, S.
3d-r2n2: A unified approach for single and multi-view 3d
object reconstruction. arXiv:1604.00449, 2016.

Community, B. O. Blender - a 3D modelling and ren-
dering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. URL http://www.
blender.org.

Dhariwal, P. and Nichol, A. Diffusion models beat gans on
image synthesis. arXiv:2105.05233, 2021.

Ding, M., Yang, Z., Hong, W., Zheng, W., Zhou, C., Yin,
D., Lin, J., Zou, X., Shao, Z., Yang, H., and Tang, J.
Cogview: Mastering text-to-image generation via trans-
formers. arXiv:2105.13290, 2021.

Fan, H., Su, H., and Guibas, L. A point set generation
network for 3d object reconstruction from a single image.
arXiv:1612.00603, 2016.

Feng, Z., Zhang, Z., Yu, X., Fang, Y., Li, L., Chen, X., Lu,
Y., Liu, J., Yin, W., Feng, S., Sun, Y., Tian, H., Wu, H.,
and Wang, H. Ernie-vilg 2.0: Improving text-to-image
diffusion model with knowledge-enhanced mixture-of-
denoising-experts. arXiv:2210.15257, 2022.

Fu, R., Zhan, X., Chen, Y., Ritchie, D., and Sridhar, S.
Shapecrafter: A recursive text-conditioned 3d shape gen-
eration model. arXiv:2207.09446, 2022.

Gafni, O., Polyak, A., Ashual, O., Sheynin, S., Parikh, D.,
and Taigman, Y. Make-a-scene: Scene-based text-to-
image generation with human priors. arXiv:2203.13131,
2022.

Gao, J., Shen, T., Wang, Z., Chen, W., Yin, K., Li, D.,
Litany, O., Gojcic, Z., and Fidler, S. Get3d: A generative
model of high quality 3d textured shapes learned from
images. arXiv:2209.11163, 2022.

Gkioxari, G., Malik, J., and Johnson, J. Mesh r-cnn.
arXiv:1906.02739, 2019.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial networks. arXiv:1406.2661, 2014.

Groueix, T., Fisher, M., Kim, V. G., Russell, B. C., and
Aubry, M. Atlasnet: A papier-mâché approach to learning
3d surface generation. arXiv:1802.05384, 2018.

Gu, J., Liu, L., Wang, P., and Theobalt, C. Stylenerf: A
style-based 3d-aware generator for high-resolution image
synthesis. arXiv:2110.08985, 2021.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. Advances in
Neural Information Processing Systems 30 (NIPS 2017),
2017.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
In NeurIPS 2021 Workshop on Deep Generative Models
and Downstream Applications, 2021. URL https://
openreview.net/forum?id=qw8AKxfYbI.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. arXiv:2006.11239, 2020.

Ho, J., Saharia, C., Chan, W., Fleet, D. J., Norouzi, M., and
Salimans, T. Cascaded diffusion models for high fidelity
image generation. arXiv:2106.15282, 2021.

Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko,
A., Kingma, D. P., Poole, B., Norouzi, M., Fleet, D. J.,
and Salimans, T. Imagen video: High definition video
generation with diffusion models. arXiv:2210.02303,
2022a.

Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi,
M., and Fleet, D. J. Video diffusion models.
arXiv:2204.03458, 2022b.

Hong, W., Ding, M., Zheng, W., Liu, X., and Tang, J.
Cogvideo: Large-scale pretraining for text-to-video gen-
eration via transformers. arXiv:2205.15868, 2022.

Jain, A., Mildenhall, B., Barron, J. T., Abbeel, P., and Poole,
B. Zero-shot text-guided object generation with dream
fields. arXiv:2112.01455, 2021.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
arXiv:2206.00364, 2022.

https://arxiv.org/abs/2207.13751
https://arxiv.org/abs/2008.06520
https://arxiv.org/abs/2012.00926
https://arxiv.org/abs/2112.07945
https://arxiv.org/abs/1803.08495
https://arxiv.org/abs/1604.00449
http://www.blender.org
http://www.blender.org
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2105.13290
https://arxiv.org/abs/1612.00603
https://arxiv.org/abs/2210.15257
https://arxiv.org/abs/2207.09446
https://arxiv.org/abs/2203.13131
https://arxiv.org/abs/2209.11163
https://arxiv.org/abs/1906.02739
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1802.05384
https://arxiv.org/abs/2110.08985
https://openreview.net/forum?id=qw8AKxfYbI
https://openreview.net/forum?id=qw8AKxfYbI
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2106.15282
https://arxiv.org/abs/2210.02303
https://arxiv.org/abs/2204.03458
https://arxiv.org/abs/2205.15868
https://arxiv.org/abs/2112.01455
https://arxiv.org/abs/2206.00364

Point·E: A System for Generating 3D Point Clouds from Complex Prompts

Khalid, N. M., Xie, T., Belilovsky, E., and Popa, T. Clip-
mesh: Generating textured meshes from text using pre-
trained image-text models. arXiv:2203.13333, 2022.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv:1312.6114, 2013.

Kosiorek, A. R., Strathmann, H., Zoran, D., Moreno, P.,
Schneider, R., Mokrá, S., and Rezende, D. J. NeRF-
VAE: A geometry aware 3D scene generative model.
arXiv:2104.00587, April 2021.

Laine, S., Hellsten, J., Karras, T., Seol, Y., Lehtinen, J.,
and Aila, T. Modular primitives for high-performance
differentiable rendering. arXiv:2011.03277, 2020.

Lin, C.-H., Gao, J., Tang, L., Takikawa, T., Zeng, X.,
Huang, X., Kreis, K., Fidler, S., Liu, M.-Y., and Lin,
T.-Y. Magic3d: High-resolution text-to-3d content cre-
ation. arXiv:2211.10440, 2022a.

Lin, K.-E., Yen-Chen, L., Lai, W.-S., Lin, T.-Y., Shih,
Y.-C., and Ramamoorthi, R. Vision transformer for
nerf-based view synthesis from a single input image.
arXiv:2207.05736, 2022b.

Liu, Z., Wang, Y., Qi, X., and Fu, C.-W. Towards im-
plicit text-guided 3d shape generation. arXiv:2203.14622,
2022.

Lorensen, W. E. and Cline, H. E. Marching cubes: A
high resolution 3d surface construction algorithm.
In Stone, M. C. (ed.), SIGGRAPH, pp. 163–169.
ACM, 1987. ISBN 0-89791-227-6. URL http:
//dblp.uni-trier.de/db/conf/siggraph/
siggraph1987.html#LorensenC87.

Luo, S. and Hu, W. Diffusion probabilistic models for 3d
point cloud generation. arXiv:2103.01458, 2021.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron,
J. T., Ramamoorthi, R., and Ng, R. Nerf: Represent-
ing scenes as neural radiance fields for view synthesis.
arXiv:2003.08934, 2020.

Mishkin, P., Ahmad, L., Brundage, M., Krueger, G.,
and Sastry, G. Dall·e 2 preview - risks and limi-
tations. 2022. URL https://github.com/
openai/dalle-2-preview/blob/main/
system-card.md.

Mittal, P., Cheng, Y.-C., Singh, M., and Tulsiani, S. Au-
tosdf: Shape priors for 3d completion, reconstruction and
generation. arXiv:2203.09516, 2022.

Mo, K., Guerrero, P., Yi, L., Su, H., Wonka, P., Mitra,
N., and Guibas, L. J. Structurenet: Hierarchical graph
networks for 3d shape generation. arXiv:1908.00575,
2019.

Neely, E. L. The risks of revolution: Ethical dilemmas
in 3d printing from a us perspective. Science and Engi-
neering Ethics, 22(5):1285–1297, Oct 2016. ISSN 1471-
5546. doi: 10.1007/s11948-015-9707-4. URL https:
//doi.org/10.1007/s11948-015-9707-4.

Nichol, A. and Dhariwal, P. Improved denoising diffusion
probabilistic models. arXiv:2102.09672, 2021.

Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin,
P., McGrew, B., Sutskever, I., and Chen, M. Glide: To-
wards photorealistic image generation and editing with
text-guided diffusion models. arXiv:2112.10741, 2021.

Or-El, R., Luo, X., Shan, M., Shechtman, E., Park,
J. J., and Kemelmacher-Shlizerman, I. Stylesdf: High-
resolution 3d-consistent image and geometry generation.
arXiv:2112.11427, 2021.

Park, D. H., Azadi, S., Liu, X., Darrell, T., and Rohrbach, A.
Benchmark for compositional text-to-image synthesis. In
Thirty-fifth Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track (Round 1),
2021. URL https://openreview.net/forum?
id=bKBhQhPeKaF.

Peng, S., Jiang, C. M., Liao, Y., Niemeyer, M., Pollefeys,
M., and Geiger, A. Shape as points: A differentiable
poisson solver. arXiv:2106.03452, 2021.

Poole, B., Jain, A., Barron, J. T., and Mildenhall, B. Dream-
fusion: Text-to-3d using 2d diffusion. arXiv:2209.14988,
2022.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. Pointnet++: Deep
hierarchical feature learning on point sets in a metric
space. arXiv:1706.02413, 2017.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning transfer-
able visual models from natural language supervision.
arXiv:2103.00020, 2021.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-to-
image generation. arXiv:2102.12092, 2021.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents. arXiv:2204.06125, 2022.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. arXiv:2112.10752, 2021.

Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D. J.,
and Norouzi, M. Image super-resolution via iterative
refinement. arXiv:arXiv:2104.07636, 2021.

https://arxiv.org/abs/2203.13333
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2104.00587
https://arxiv.org/abs/2011.03277
https://arxiv.org/abs/2211.10440
https://arxiv.org/abs/2207.05736
https://arxiv.org/abs/2203.14622
http://dblp.uni-trier.de/db/conf/siggraph/siggraph1987.html#LorensenC87
http://dblp.uni-trier.de/db/conf/siggraph/siggraph1987.html#LorensenC87
http://dblp.uni-trier.de/db/conf/siggraph/siggraph1987.html#LorensenC87
https://arxiv.org/abs/2103.01458
https://arxiv.org/abs/2003.08934
https://github.com/openai/dalle-2-preview/blob/main/system-card.md
https://github.com/openai/dalle-2-preview/blob/main/system-card.md
https://github.com/openai/dalle-2-preview/blob/main/system-card.md
https://arxiv.org/abs/2203.09516
https://arxiv.org/abs/1908.00575
https://doi.org/10.1007/s11948-015-9707-4
https://doi.org/10.1007/s11948-015-9707-4
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2112.10741
https://arxiv.org/abs/2112.11427
https://openreview.net/forum?id=bKBhQhPeKaF
https://openreview.net/forum?id=bKBhQhPeKaF
https://arxiv.org/abs/2106.03452
https://arxiv.org/abs/2209.14988
https://arxiv.org/abs/1706.02413
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/arXiv:2104.07636

Point·E: A System for Generating 3D Point Clouds from Complex Prompts

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Den-
ton, E., Ghasemipour, S. K. S., Ayan, B. K., Mahdavi,
S. S., Lopes, R. G., Salimans, T., Ho, J., Fleet, D. J., and
Norouzi, M. Photorealistic text-to-image diffusion mod-
els with deep language understanding. arXiv:2205.11487,
2022.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. Improved techniques for
training gans. arXiv:1606.03498, 2016.

Sanghi, A., Chu, H., Lambourne, J. G., Wang, Y.,
Cheng, C.-Y., Fumero, M., and Malekshan, K. R.
Clip-forge: Towards zero-shot text-to-shape generation.
arXiv:2110.02624, 2021.

Sanghi, A., Fu, R., Liu, V., Willis, K., Shayani, H., Khasah-
madi, A. H., Sridhar, S., and Ritchie, D. Textcraft: Zero-
shot generation of high-fidelity and diverse shapes from
text. arXiv:2211.01427, 2022.

Schwarz, K., Liao, Y., Niemeyer, M., and Geiger, A. Graf:
Generative radiance fields for 3d-aware image synthesis.
2020.

Singer, U., Polyak, A., Hayes, T., Yin, X., An, J., Zhang,
S., Hu, Q., Yang, H., Ashual, O., Gafni, O., Parikh, D.,
Gupta, S., and Taigman, Y. Make-a-video: Text-to-video
generation without text-video data. arXiv:2209.14792,
2022.

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. arXiv:1503.03585, 2015.

Song, Y. and Ermon, S. Improved techniques for train-
ing score-based generative models. arXiv:2006.09011,
2020a.

Song, Y. and Ermon, S. Generative modeling
by estimating gradients of the data distribution.
arXiv:arXiv:1907.05600, 2020b.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar,
A., Ermon, S., and Poole, B. Score-based genera-
tive modeling through stochastic differential equations.
arXiv:2011.13456, 2020.

Straub, J. and Kerlin, S. Evaluation of the use of 3D
printing and imaging to create working replica keys.
In Javidi, B. and Son, J.-Y. (eds.), Three-Dimensional
Imaging, Visualization, and Display 2016, volume 9867,
pp. 98670E. International Society for Optics and Pho-
tonics, SPIE, 2016. doi: 10.1117/12.2223858. URL
https://doi.org/10.1117/12.2223858.

Sun, S.-H., Huh, M., Liao, Y.-H., Zhang, N., and Lim, J. J.
Multi-view to novel view: Synthesizing novel views with

self-learned confidence. In Ferrari, V., Hebert, M., Smin-
chisescu, C., and Weiss, Y. (eds.), Computer Vision –
ECCV 2018, pp. 162–178, Cham, 2018. Springer Interna-
tional Publishing. ISBN 978-3-030-01219-9.

van den Oord, A., Vinyals, O., and Kavukcuoglu, K. Neural
discrete representation learning. arXiv:1711.00937, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. arXiv:1706.03762, 2017.

Walther, G. Printing insecurity? the security implications of
3d-printing of weapons. Science and engineering ethics,
21, 12 2014. doi: 10.1007/s11948-014-9617-x.

Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., and Jiang, Y.-G.
Pixel2mesh: Generating 3d mesh models from single rgb
images. arXiv:1804.01654, 2018.

Watson, D., Chan, W., Martin-Brualla, R., Ho, J., Tagliasac-
chi, A., and Norouzi, M. Novel view synthesis with
diffusion models. arXiv:2210.04628, 2022.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X.,
and Xiao, J. 3d shapenets: A deep representation for volu-
metric shapes. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June
2015.

Yang, G., Huang, X., Hao, Z., Liu, M.-Y., Belongie, S., and
Hariharan, B. Pointflow: 3d point cloud generation with
continuous normalizing flows. arXiv:1906.12320, 2019.

Yu, A., Ye, V., Tancik, M., and Kanazawa, A. pixel-
nerf: Neural radiance fields from one or few images.
arXiv:2012.02190, 2020.

Yu, J., Xu, Y., Koh, J. Y., Luong, T., Baid, G., Wang, Z.,
Vasudevan, V., Ku, A., Yang, Y., Ayan, B. K., Hutchinson,
B., Han, W., Parekh, Z., Li, X., Zhang, H., Baldridge, J.,
and Wu, Y. Scaling autoregressive models for content-
rich text-to-image generation. arXiv:2206.10789, 2022.

Zeng, X., Vahdat, A., Williams, F., Gojcic, Z., Litany, O.,
Fidler, S., and Kreis, K. Lion: Latent point diffusion
models for 3d shape generation. arXiv:2210.06978, 2022.

Zhou, L., Du, Y., and Wu, J. 3d shape generation and com-
pletion through point-voxel diffusion. arXiv:2104.03670,
2021a.

Zhou, P., Xie, L., Ni, B., and Tian, Q. Cips-3d: A 3d-aware
generator of gans based on conditionally-independent
pixel synthesis. arXiv:2110.09788, 2021b.

https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/1606.03498
https://arxiv.org/abs/2110.02624
https://arxiv.org/abs/2211.01427
https://arxiv.org/abs/2209.14792
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2006.09011
https://arxiv.org/abs/arXiv:1907.05600
https://arxiv.org/abs/2011.13456
https://doi.org/10.1117/12.2223858
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1804.01654
https://arxiv.org/abs/2210.04628
https://arxiv.org/abs/1906.12320
https://arxiv.org/abs/2012.02190
https://arxiv.org/abs/2206.10789
https://arxiv.org/abs/2210.06978
https://arxiv.org/abs/2104.03670
https://arxiv.org/abs/2110.09788

Point·E: A System for Generating 3D Point Clouds from Complex Prompts

Table 2. Training hyper-parameters for our point cloud diffusion
models. Width and depth refer to the size of the transformer
backbone.

Model Width Depth LR # Params

Base (40M) 512 12 1e-4 40,466,956
Base (300M) 1024 24 7e-5 311,778,316

Base (1B) 2048 24 5e-5 1,244,311,564
Upsampler 512 12 1e-4 40,470,540

Table 3. Sampling hyperparameters for figures and CLIP R-
Precision evaluations.

Hyperparameter Base Upsampler

Timesteps 64 64
Guidance scale 3.0 3.0

Schurn 3 0
σmin 1e-3 1e-3
σmax 120 160

A. Hyperparameters
We train all of our diffusion models with batch size 64 for
1,300,000 iterations. In Table 2, we enumerate the training
hyperparameters that were varied across model sizes. We
train all of our models with 1024 diffusion timesteps. For
our upsampler model, we use the linear noise schedule from
Ho et al. (2020), and for our base models, we use the cosine
noise schedule proposed by Nichol & Dhariwal (2021).

For P-FID and P-IS evaluations, we produce 10K samples
using stochastic DDPM with the full noise schedule. For
CLIP R-Precision and figures in the paper, we use 64 steps
(128 function evaluations) of the Heun sampler from Karras
et al. (2022) for both the base and upsampler models. Table
3 enumerates the hyperparameters used for Heun sampling.
When sampling from GLIDE, we use 150 diffusion steps for
the base model, and 50 diffusion steps for the upsampling
model. We report sampling time for each component of our
stack in Table 4.

B. P-FID and P-IS Metrics
To evaluate P-FID and P-IS, we train a PointNet++ model
on ModelNet40 (Wu et al., 2015) using an open source im-
plementation.1 We modify the baseline model in several
ways. First, we double the width of the model, resulting in
roughly 16 million parameters. Next, we apply some addi-
tional data augmentations to make the model more robust to
out-of-distribution samples. In particular, we apply random

1https://github.com/yanx27/Pointnet_
Pointnet2_pytorch

Table 4. Sampling performance for various components of our
model. We use the Karras sampler for our base and upsampler
models, but not for GLIDE.

Model V100 seconds

GLIDE 46.28
Upsampler (40M) 12.58

Base (40M) 3.35
Base (300M) 12.78

Base (1B) 28.67

rotations to each point cloud, and we add Gaussian noise to
the points with standard deviation sampled from U [0, 0.01].

To compute P-FID, we extract features for each point cloud
from the layer before the final ReLU activation. To compute
P-IS, we use the predicted class probabilities for the 40
classes from ModelNet40. We note that our generative
models are trained on a dataset which only has P-IS 12.95,
so our best reported P-IS score of ∼ 13 is near the expected
upper bound.

C. Mesh Extraction
To convert point clouds into meshes, we train a model which
predicts SDFs from point clouds and apply marching cubes
to the resulting SDFs. We parametrize our SDF model as
an encoder-decoder Transformer. First, an 8-layer encoder
processes the input point cloud as an unordered sequence,
producing a sequence of hidden representations. Then, a
4-layer cross-attention decoder takes 3D coordinates and
the sequence of latent vectors, and predicts an SDF value.
Each input query point is processed independently, allowing
for efficient batching. Using more layers in the encoder and
fewer in the decoder allows us to amortize the encoding cost
across many query points.

We train our SDF regression model on a subset of 2.4 mil-
lion manifold meshes from our dataset, and add Gaussian
noise with σ = 0.005 to the point clouds as data augmenta-
tion. We train the model fθ(x) to predict the SDF y with a
weighted L1 objective:

{
1 · ||fθ(x)− y||1 fθ(x) > y

4 · ||fθ(x)− y||1 fθ(x) ≤ y

Here, we define the SDF such that points outside of the sur-
face have negative sign. Therefore, in the face of uncertainty,
the model is encouraged predict that points are inside the
surface. We found this to be helpful in initial experiments,
likely because it helps prevent the resulting meshes from
effectively ignoring thin or noisy parts of the point cloud.

When producing meshes for evaluations, we use a grid size

https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/yanx27/Pointnet_Pointnet2_pytorch

Point·E: A System for Generating 3D Point Clouds from Complex Prompts

Figure 7. Examples of point clouds (left) and corresponding ex-
tracted meshes (right). We find that our method often produces
smooth meshes and removes outliers (middle row), but can some-
times miss thin/sparse parts of objects (bottom row).

of 128 × 128 × 128, resulting in 1283 queries to the SDF
model. In Figure 7, we show examples of input point clouds
and corresponding output meshes from our model. We
observe that our method works well in many cases, but
sometimes fails to capture thin or sparse parts of a point
cloud.

D. Conditioning on DALL·E 2 Samples
In our main experiments, we use a specialized text-to-image
model to produce in-distribution conditioning images for
our point cloud models. In this section, we explore what
happens if we use renders from a pre-existing text-to-image
model, DALL·E 2.

In Figure 8, we present three image-to-3D examples where
the conditioning images are generated by DALL·E 2. We
find that DALL·E 2 tends to include shadows under objects,
and our point cloud model interprets these as a dark ground
plane. We also find that our point cloud model can misinter-
pret shapes from the generated images when the objects take
up too much of the image. In these cases, adding a border
around the generated images can improve the reconstructed
shapes.

Figure 8. Examples of point clouds reconstructed from DALL·2
generations. The top image was produced using the prompt “a
3d rendering of an avocado chair, chair imitating an avocado, full
view, white background”. The middle image was produced using
the prompt “a simple full view of a 3d rendering of a corgi in front
of a white background”. The bottom image is the same as the
middle image, but with an additional white border.

E. Pure Text-Conditional Generation
In Section 5.1, we train a pure text-conditional point cloud
model without an additional image generation step. While
we find that this model performs worse on evaluations than
our full system, it still achieves non-trivial results. In this
section, we explore the capabilities and limitations of this
model.

In Figure 9, we show examples where our text-conditional
model is able to produce point clouds matching the pro-
vided text prompt. Notably, these examples include simple
prompts that describe single objects. In Figure 10, we show
examples where this model struggles with prompts that com-
bine multiple concepts.

Finally, we expect that this model has inherited biases from
our 3D dataset. We present one possible example of this in
Figure 11, wherein the model produces longer and narrower
objects for the prompt “a woman” than for the prompt “a
man” when using a fixed diffusion noise seed.

Point·E: A System for Generating 3D Point Clouds from Complex Prompts

“a motorbike” “a dog”

“a desk lamp” “a guitar”

“an ambulance” “a laptop computer”

Figure 9. Selected point clouds generated by our pure text-
conditional 40M parameter point cloud diffusion model.

(a) Prompt: “a small red cube is sitting on top of a large blue
cube. red on top, blue on bottom”

(b) Prompt: “a corgi wearing a red santa hat”

Figure 10. Sample grids where our small, pure text-conditional
model fails to understand complex prompts.

(a) Prompt: “a man”

(b) Prompt: “a woman”

Figure 11. Sample grids from our pure text-conditional 40M pa-
rameter model. Samples in the top grid use the same noise seed as
the corresponding samples in the bottom grid.

	1 Introduction
	2 Background
	3 Related Work
	4 Method
	4.1 Dataset
	4.2 View Synthesis GLIDE Model
	4.3 Point Cloud Diffusion
	4.4 Point Cloud Upsampler
	4.5 Producing Meshes

	5 Results
	5.1 Model Scaling and Ablations
	5.2 Qualitative Results
	5.3 Comparison to Other Methods

	6 Limitations and Future Work
	7 Conclusion
	8 Acknowledgements
	A Hyperparameters
	B P-FID and P-IS Metrics
	C Mesh Extraction
	D Conditioning on DALL-E 2 Samples
	E Pure Text-Conditional Generation

